Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.983
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612763

RESUMO

Idiopathic intellectual disability (IID) encompasses the cases of intellectual disability (ID) without a known cause and represents approximately 50% of all cases. Neural progenitor cells (NPCs) from the olfactory neuroepithelium (NEO) contain the same information as the cells found in the brain, but they are more accessible. Some miRNAs have been identified and associated with ID of known etiology. However, in idiopathic ID, the effect of miRNAs is poorly understood. The aim of this study was to determine the miRNAs regulating the expression of mRNAs that may be involved in development of IID. Expression profiles were obtained using NPC-NEO cells from IID patients and healthy controls by microarray. A total of 796 miRNAs and 28,869 mRNAs were analyzed. Several miRNAs were overexpressed in the IID patients compared to controls. miR-25 had the greatest expression. In silico analysis showed that ROBO2 was the target for miR-25, with the highest specificity and being the most down-regulated. In vitro assay showed an increase of miR-25 expression induced a decrease in ROBO2 expression. In neurodevelopment, ROBO2 plays a crucial role in episodic learning and memory, so its down-regulation, caused by miR-25, could have a fundamental role in the intellectual disability that, until now, has been considered idiopathic.


Assuntos
Deficiência Intelectual , MicroRNAs , Humanos , Deficiência Intelectual/genética , MicroRNAs/genética , Encéfalo , Regulação para Baixo/genética , Aprendizagem , RNA Mensageiro , 60696 , Receptores Imunológicos/genética
2.
Sci Transl Med ; 16(741): eadj9052, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569016

RESUMO

Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-ß (Aß) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aß and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aß plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aß load, mitigated some Aß-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Camundongos , Animais , Microglia/metabolismo , Anticorpos/metabolismo , Receptores de Superfície Celular/metabolismo , Amiloide/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E , Leucócitos/metabolismo , Camundongos Transgênicos , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
3.
Immunity ; 57(4): 731-751, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599168

RESUMO

RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.


Assuntos
RNA Helicases DEAD-box , Transdução de Sinais , RNA Helicases DEAD-box/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Proteína DEAD-box 58 , Imunidade Inata , Receptores Imunológicos , RNA
4.
Immunity ; 57(4): 752-771, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599169

RESUMO

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.


Assuntos
Inflamação , Ácidos Nucleicos , Humanos , Imunidade Inata , Receptores Imunológicos , Alarminas
6.
Int J Biol Sci ; 20(6): 1992-2007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617547

RESUMO

Objective: Osteoarthritis (OA) is the most prominent chronic arthritic disease, affecting over 3 billion people globally. Synovial macrophages, as immune cells, play an essential role in cartilage damage in OA. Therefore, regulating macrophages is crucial for controlling the pathological changes in OA. Triggering receptor expressed on myeloid cells 2 (TREM2), as expressed on immune cell surfaces, such as macrophages and dendritic cells, has suppressed inflammation and regulated M2 macrophage polarization but demonstrated an unknown role in synovial macrophage polarization in OA. This study aimed to investigate TREM2 expression downregulation in OA mice macrophages. Furthermore, the expression trend of TREM2 was associated with polarization-related molecule expression in macrophages of OA mice. Results: We used TREM2 knockout (TREM2-KO) mice to observe that TREM2 deficiency significantly exacerbated the joint inflammation response in OA mice, thereby accelerating disease progression. Separating macrophages and chondrocytes from TREM2-KO mice and co-cultivating them significantly increased chondrocyte apoptosis and inhibited chondrocyte proliferation. Further, TREM2 deficiency also significantly enhanced phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway activation, increasing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 3 (CXCL3) expression. Furthermore, NF-κB signaling pathway inhibition significantly suppressed arthritis inflammation in OA mice, thereby effectively alleviating TREM2 deficiency-related adverse effects on chondrocytes. Notably, knocking down CXCL3 of TREM2-KO mice macrophages significantly inhibits inflammatory response and promotes chondrocyte proliferation. Intravenous recombinant TREM2 protein (soluble TREM2, sTREM2) injection markedly promotes macrophage polarization from M1 to M2 and improves the joint tissue pathology and inflammatory response of OA. Conclusion: Our study reveals that TREM2 promotes macrophage polarization from M1 to M2 during OA by NF-κB/CXCL3 axis regulation, thereby improving the pathological state of OA.


Assuntos
NF-kappa B , Osteoartrite , Animais , Camundongos , Quimiocinas CXC , Inflamação , Glicoproteínas de Membrana/genética , Osteoartrite/genética , Fosfatidilinositol 3-Quinases , Receptores Imunológicos/genética , Transdução de Sinais/genética
7.
Molecules ; 29(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474651

RESUMO

Valued for their ability to rapidly kill multiple tumor cells in succession as well as their favorable safety profile, NK cells are of increasing interest in the field of immunotherapy. As their cytotoxic activity is controlled by a complex network of activating and inhibiting receptors, they offer a wide range of possible antigens to modulate their function by antibodies. In this work, we utilized our established common light chain (cLC)-based yeast surface display (YSD) screening procedure to isolate novel B7-H3 and TIGIT binding monoclonal antibodies. The chicken-derived antibodies showed single- to low-double-digit nanomolar affinities and were combined with a previously published CD16-binding Fab in a 2+1 format to generate a potent NK engaging molecule. In a straightforward, easily adjustable apoptosis assay, the construct B7-H3xCD16xTIGIT showed potent apoptosis induction in cancer cells. These results showcase the potential of the TIGIT NK checkpoint in combination with activating receptors to achieve increased cytotoxic activity.


Assuntos
Imunoterapia , Células Matadoras Naturais , Anticorpos Monoclonais , Receptores Imunológicos , Apoptose
8.
Nat Commun ; 15(1): 1909, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429294

RESUMO

Severe heterogeneity within glioblastoma has spurred the notion that disrupting the interplay between multiple elements on immunosuppression is at the core of meaningful anti-tumor responses. T cell immunoreceptor with Ig and ITIM domains (TIGIT) and its glioblastoma-associated antigen, CD155, form a highly immunosuppressive axis in glioblastoma and other solid tumors, yet targeting of TIGIT, a functionally heterogeneous receptor on tumor-infiltrating immune cells, has largely been ineffective as monotherapy, suggesting that disruption of its inhibitory network might be necessary for measurable responses. It is within this context that we show that the usurpation of the TIGIT - CD155 axis via engineered synNotch-mediated activation of induced pluripotent stem cell-derived natural killer (NK) cells promotes transcription factor-mediated activation of a downstream signaling cascade that results in the controlled, localized blockade of CD73 to disrupt purinergic activity otherwise resulting in the production and accumulation of immunosuppressive extracellular adenosine. Such "decoy" receptor engages CD155 binding to TIGIT, but tilts inhibitory TIGIT/CD155 interactions toward activation via downstream synNotch signaling. Usurping activities of TIGIT and CD73 promotes the function of adoptively transferred NK cells into intracranial patient-derived models of glioblastoma and enhances their natural cytolytic functions against this tumor to result in complete tumor eradication. In addition, targeting both receptors, in turn, reprograms the glioblastoma microenvironment via the recruitment of T cells and the downregulation of M2 macrophages. This study demonstrates that TIGIT/CD155 and CD73 are targetable receptor partners in glioblastoma. Our data show that synNotch-engineered pluripotent stem cell-derived NK cells are not only effective mediators of anti-glioblastoma responses within the setting of CD73 and TIGIT/CD155 co-targeting, but represent a powerful allogeneic treatment option for this tumor.


Assuntos
Glioblastoma , Células-Tronco Pluripotentes Induzidas , Células Matadoras Naturais , Humanos , Glioblastoma/terapia , Glioblastoma/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Matadoras Naturais/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral , 5'-Nucleotidase/imunologia , 5'-Nucleotidase/metabolismo
9.
Viruses ; 16(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543713

RESUMO

BACKGROUND AND AIMS: Treatment with siRNAs that target HBV has demonstrated robust declines in HBV antigens. This effect is also observed in the AAV-HBV mouse model, which was used to investigate if two cycles of GalNAc-HBV-siRNA treatment could induce deeper declines in HBsAg levels or prevent rebound, and to provide insights into the liver immune microenvironment. METHODS: C57Bl/6 mice were transduced with one of two different titers of AAV-HBV for 28 days, resulting in stable levels of HBsAg of about 103 or 105 IU/mL. Mice were treated for 12 weeks (four doses q3wk) per cycle with 3 mg/kg of siRNA-targeting HBV or an irrelevant sequence either once (single treatment) or twice (retreatment) with an 8-week treatment pause in between. Blood was collected to evaluate viral parameters. Nine weeks after the last treatment, liver samples were collected to perform phenotyping, bulk RNA-sequencing, and immunohistochemistry. RESULTS: Independent of HBsAg baseline levels, treatment with HBV-siRNA induced a rapid decline in HBsAg levels, which then plateaued before gradually rebounding 12 weeks after treatment stopped. A second cycle of HBV-siRNA treatment induced a further decline in HBsAg levels in serum and the liver, reaching undetectable levels and preventing rebound when baseline levels were 103 IU/mL. This was accompanied with a significant increase in inflammatory macrophages in the liver and significant upregulation of regulatory T-cells and T-cells expressing immune checkpoint receptors. CONCLUSIONS: Retreatment induced an additional decline in HBsAg levels, reaching undetectable levels when baseline HBsAg levels were 3log10 or less. This correlated with T-cell activation and upregulation of Trem2.


Assuntos
Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Animais , Camundongos , Vírus da Hepatite B/genética , RNA Interferente Pequeno/genética , Fígado , Retratamento , DNA Viral , Antivirais/uso terapêutico , Glicoproteínas de Membrana , Receptores Imunológicos
10.
Front Immunol ; 15: 1370907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533515

RESUMO

Introduction: Chronic activation of self-reactive T cells with beta cell antigens results in the upregulation of immune checkpoint molecules that keep self-reactive T cells under control and delay beta cell destruction in autoimmune diabetes. Inhibiting PD1/PD-L1 signaling results in autoimmune diabetes in mice and humans with pre-existing autoimmunity against beta cells. However, it is not known if other immune checkpoint molecules, such as TIGIT, can also negatively regulate self-reactive T cells. TIGIT negatively regulates the CD226 costimulatory pathway, T-cell receptor (TCR) signaling, and hence T-cell function. Methods: The phenotype and function of TIGIT expressing islet infiltrating T cells was studied in non-obese diabetic (NOD) mice using flow cytometry and single cell RNA sequencing. To determine if TIGIT restrains self-reactive T cells, we used a TIGIT blocking antibody alone or in combination with anti-PDL1 antibody. Results: We show that TIGIT is highly expressed on activated islet infiltrating T cells in NOD mice. We identified a subset of stem-like memory CD8+ T cells expressing multiple immune checkpoints including TIGIT, PD1 and the transcription factor EOMES, which is linked to dysfunctional CD8+ T cells. A known ligand for TIGIT, CD155 was expressed on beta cells and islet infiltrating dendritic cells. However, despite TIGIT and its ligand being expressed, islet infiltrating PD1+TIGIT+CD8+ T cells were functional. Inhibiting TIGIT in NOD mice did not result in exacerbated autoimmune diabetes while inhibiting PD1-PDL1 resulted in rapid autoimmune diabetes, indicating that TIGIT does not restrain islet infiltrating T cells in autoimmune diabetes to the same degree as PD1. Partial inhibition of PD1-PDL1 in combination with TIGIT inhibition resulted in rapid diabetes in NOD mice. Discussion: These results suggest that TIGIT and PD1 act in synergy as immune checkpoints when PD1 signaling is partially impaired. Beta cell specific stem-like memory T cells retain their functionality despite expressing multiple immune checkpoints and TIGIT is below PD1 in the hierarchy of immune checkpoints in autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Humanos , Camundongos , Proteínas de Checkpoint Imunológico , Ligantes , Camundongos Endogâmicos NOD , Receptores Imunológicos/metabolismo
11.
Front Immunol ; 15: 1290564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545097

RESUMO

Background: Sepsis is one of the major causes of death and increased health care burden in modern intensive care units. Immune checkpoints have been prompted to be key modulators of T cell activation, T cell tolerance and T cell exhaustion. This study was designed to investigate the role of the negative immune checkpoint, T cell immunoglobulin and ITIM domain (TIGIT), in the early stage of sepsis. Method: An experimental murine model of sepsis was developed by cecal ligation and puncture (CLP). TIGIT and CD155 expression in splenocytes at different time points were assessed using flow cytometry. And the phenotypes of TIGIT-deficient (TIGIT-/-) and wild-type (WT) mice were evaluated to explore the engagement of TIGIT in the acute phase of sepsis. In addition, the characteristics were also evaluated in the WT septic mice pretreated with anti-TIGIT antibody. TIGIT and CD155 expression in tissues was measured using real-time quantitative PCR and immunofluorescence staining. Proliferation and effector function of splenic immune cells were evaluated by flow cytometry. Clinical severity and tissue injury were scored to evaluate the function of TIGIT on sepsis. Additionally, tissue injury biomarkers in peripheral blood, as well as bacterial load in peritoneal lavage fluid and liver were also measured. Results: The expression of TIGIT in splenic T cells and NK cells was significantly elevated at 24 hours post CLP.TIGIT and CD155 mRNA levels were upregulated in sepsis-involved organs when mice were challenged with CLP. In CLP-induced sepsis, CD4+ T cells from TIGIT-/- mice shown increased proliferation potency and cytokine production when compared with that from WT mice. Meanwhile, innate immune system was mobilized in TIGIT-/- mice as indicated by increased proportion of neutrophils and macrophages with potent effector function. In addition, tissue injury and bacteria burden in the peritoneal cavity and liver was reduced in TIGIT-/- mice with CLP induced sepsis. Similar results were observed in mice treated with anti-TIGIT antibody. Conclusion: TIGIT modulates CD4+ T cell response against polymicrobial sepsis, suggesting that TIGIT could serve as a potential therapeutic target for sepsis.


Assuntos
Sepse , Linfócitos T , Animais , Camundongos , Linfócitos T CD4-Positivos , Células Matadoras Naturais , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
12.
Cell Rep Med ; 5(3): 101450, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508139

RESUMO

CD47 is a ligand of SIRPα, an inhibitory receptor expressed by macrophages, dendritic cells, and natural killer (NK) cells, and, therefore, transgenic overexpression of CD47 is considered an effective approach to inhibiting transplant rejection. However, the detrimental effect of CD47 signaling is overlooked when exploring this approach. Here, we construct a mutant CD47 by replacing the transmembrane and intracellular domains with a membrane anchor (CD47-IgV). In both human and mouse cells, CD47-IgV is efficiently expressed on the cell surface and protects against phagocytosis in vitro and in vivo but does not induce cell death or inhibit angiogenesis. Furthermore, hematopoietic stem cells expressing transgenic CD47-IgV show no detectable alterations in engraftment or differentiation. This study provides a potentially effective means of achieving transgenic CD47 expression that may help to produce gene-edited pigs for xenotransplantation and hypoimmunogenic pluripotent stem cells for regenerative medicine.


Assuntos
60489 , Antígeno CD47 , Animais , Humanos , Camundongos , Antígeno CD47/genética , Antígeno CD47/metabolismo , Morte Celular , Fagocitose/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Suínos
13.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542077

RESUMO

Novel technologies such as single-cell RNA and single-nucleus RNA sequencing have shed new light on the complexity of different microglia populations in physiological and pathological states. The transcriptomic profiling of these populations has led to the subclassification of specific disease-associated microglia and microglia clusters in neurodegenerative diseases. A common profile includes the downregulation of homeostasis and the upregulation of inflammatory markers. Furthermore, there is concordance in few clusters between murine and human samples. Apolipoprotein E, which has long been considered a high-risk factor for late-onset Alzheimer's disease, is strongly regulated in both these murine and human clusters. Transforming growth factor-ß plays an essential role during the development and maturation of microglia. In a pathological state, it attenuates their activation and is involved in numerous cell regulatory processes. Transforming growth factor-ß also has an influence on the deposition of amyloid-beta, as it is involved in the regulation of key proteins and molecules. Taken together, this review highlights the complex interaction of apolipoprotein E, the triggering receptor on myeloid cells 2, and transforming growth factor-ß as part of a regulatory axis in microglia at the onset and over the course of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores Imunológicos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Modelos Animais de Doenças
14.
Helicobacter ; 29(2): e13069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516860

RESUMO

Helicobacter pylori (H. pylori) seems to play causative roles in gastric cancers. H. pylori has also been detected in established gastric cancers. How the presence of H. pylori modulates immune response to the cancer is unclear. The cytotoxicity of natural killer (NK) cells, toward infected or malignant cells, is controlled by the repertoire of activating and inhibitory receptors expressed on their surface. Here, we studied H. pylori-induced changes in the expression of ligands, of activating and inhibitory receptors of NK cells, in the gastric adenocarcinoma AGS cells, and their impacts on NK cell responses. AGS cells lacked or had low surface expression of the class I major histocompatibility complex (MHC-I) molecules HLA-E and HLA-C-ligands of the major NK cell inhibitory receptors NKG2A and killer-cell Ig-like receptor (KIR), respectively. However, AGS cells had high surface expression of ligands of activating receptors DNAM-1 and CD2, and of the adhesion molecules LFA-1. Consistently, AGS cells were sensitive to killing by NK cells despite the expression of inhibitory KIR on NK cells. Furthermore, H. pylori enhanced HLA-C surface expression on AGS cells. H. pylori infection enhanced HLA-C protein synthesis, which could explain H. pylori-induced HLA-C surface expression. H. pylori infection enhanced HLA-C surface expression also in the hepatoma Huh7 and HepG2 cells. Furthermore, H. pylori-induced HLA-C surface expression on AGS cells promoted inhibition of NK cells by KIR, and thereby protected AGS cells from NK cell cytotoxicity. These results suggest that H. pylori enhances HLA-C expression in host cells and protects them from the cytotoxic attack of NK cells expressing HLA-C-specific inhibitory receptors.


Assuntos
Adenocarcinoma , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/patologia , Helicobacter pylori/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Receptores Imunológicos/metabolismo , Receptores KIR/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
15.
DNA Cell Biol ; 43(4): 197-205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466944

RESUMO

Previous studies have shown that interferon gene-stimulating protein (STING) is essential for IFN-γ-inducible protein 16 (IFI16) as the DNA sensor and RNA sensor to induce transcription of type I interferon (IFN-I) and is essential for IFI16 to synergize with DNA sensor GMP-AMP (cGAMP) synthase (cGAS) in induction of IFN-I transcription. While other and our previous studies have shown that IFI16 enhanced retinoic acid-inducible gene I (RIG-I)-, which was an RNA sensor, and mitochondrial antiviral signaling (MAVS)-, which was the adaptor protein of RIG-I, induced production of IFN-I, so we wonder whether IFI16 regulates the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-dependent manner. We used HEK 293T cells, which did not express endogenous STING and were unable to mount an innate immune response upon DNA transfection and found that IFI16 could enhance RIG-I- and MAVS-mediated induction of IFN-I in a STING-independent way. Furthermore, we found that upregulation of the expression of NF-kappa-B essential modulator (NEMO) by IFI16 was not the mechanism that IFI16 regulated the induction of IFN-I. In conclusion, we found that IFI16 regulated the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-independent manner.


Assuntos
Imunidade Inata , Interferon Tipo I , Proteína DEAD-box 58/genética , DNA , Interferon Tipo I/genética , Receptores Imunológicos/genética , RNA , Humanos
16.
Sci Transl Med ; 16(738): eadk1866, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478630

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (NASH), is an advanced stage of metabolic fatty liver disease. The pathogenic mechanisms of MASH center on hepatocyte injury and the ensuing immune response within the liver microenvironment. Recent work has implicated TREM2+ macrophages in various disease conditions, and substantial induction of TREM2+ NASH-associated macrophages (NAMs) serves as a hallmark of metabolic liver disease. Despite this, the mechanisms through which NAMs contribute to MASH pathogenesis remain poorly understood. Here, we identify membrane-spanning 4-domains a7 (MS4A7) as a NAM-specific pathogenic factor that exacerbates MASH progression in mice. Hepatic MS4A7 expression was strongly induced in mouse and human MASH and associated with the severity of liver injury. Whole-body and myeloid-specific ablation of Ms4a7 alleviated diet-induced MASH pathologies in male mice. We demonstrate that exposure to lipid droplets (LDs), released upon injury of steatotic hepatocytes, triggered NAM induction and exacerbated MASH-associated liver injury in an MS4A7-dependent manner. Mechanistically, MS4A7 drove NLRP3 inflammasome activation via direct physical interaction and shaped disease-associated cell states within the liver microenvironment. This work reveals the LD-MS4A7-NLRP3 inflammasome axis as a pathogenic driver of MASH progression and provides insights into the role of TREM2+ macrophages in disease pathogenesis.


Assuntos
Inflamassomos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Inflamassomos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Imunológicos/metabolismo
17.
J Med Virol ; 96(3): e29533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483048

RESUMO

Cytidine/uridine monophosphate kinase 2 (UMP-CMP kinase 2, CMPK2) has been reported as an antiviral interferon-stimulated gene (ISG). We previously observed that the expression of CMPK2 was significantly upregulated after Zika Virus (ZIKV) infection in A549 cells. However, the association and the underlying mechanisms between CMPK2 induction and ZIKV replication remain to be determined. We investigated the induction of CMPK2 during ZIKV infection and the effect of CMPK2 on ZIKV replication in A549, U251, Vero, IFNAR-deficient U5A and its parental 2fTGH cells, Huh7 and its RIG-I-deficient derivatives Huh7.5.1 cells. The activation status of Jak-STAT signaling pathway was determined by detecting the phosphorylation level of STAT1, the activity of interferon stimulated response element (ISRE) and the expression of several interferon stimulated genes (ISGs). We found that ZIKV infection induced CMPK2 expression through an IFNAR and RIG-I dependent manner. Overexpression of CMPK2 inhibited while CMPK2 knockdown promoted ZIKV replication in A549 and U251 cells. Mechanically, we found that CMPK2 overexpression increased IFNß expression and activated Jak/STAT signaling pathway as shown by the increased level of p-STAT1, enhanced activity of ISRE, and the upregulated expression of downstream ISGs. These findings suggest that ZIKV infection induced CMPK2 expression, which inhibited ZIKV replication and serves as a positive feedback regulator for IFN-Jak/STAT pathway.


Assuntos
Interferon Tipo I , Núcleosídeo-Fosfato Quinase , Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Interferon Tipo I/genética , Replicação Viral , Receptores Imunológicos
18.
Cells ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474367

RESUMO

Co-inhibitory receptors (Co-IRs) are essential in controlling the progression of immunopathology in rheumatoid arthritis (RA) by limiting T cell activation. The objective of this investigation was to determine the phenotypic expression of Co-IR T cells and to assess the levels of serum soluble PD-1, PDL-2, and TIM3 in Taiwanese RA patients. METHODS: Co-IRs T cells were immunophenotyped employing multicolor flow cytometry, and ELISA was utilized for measuring soluble PD-1, PDL-2, and TIM3. Correlations have been detected across the percentage of T cells expressing Co-IRs (MFI) and different indicators in the blood, including ESR, high-sensitivity CRP (hsCRP), 28 joint disease activity scores (DAS28), and soluble PD-1/PDL-2/TIM3. RESULTS: In RA patients, we recognized elevated levels of PD-1 (CD279), CTLA-4, and TIGIT in CD4+ T cells; TIGIT, HLA-DR, TIM3, and LAG3 in CD8+ T cells; and CD8+CD279+TIM3+, CD8+HLA-DR+CD38+ T cells. The following tests were revealed to be correlated with hsCRP: CD4/CD279 MFI, CD4/CD279%, CD4/TIM3%, CD8/TIM3%, CD8/TIM3 MFI, CD8/LAG3%, and CD8+HLA-DR+CD38+%. CD8/LAG3 and CD8/TIM3 MFIs are linked to ESR. DAS28-ESR and DAS28-CRP exhibited relationships with CD4/CD127 MFI, CD8/CD279%, and CD8/CD127 MFI, respectively. CD4+CD279+TIM3+% was correlated with DAS28-ESR (p = 0.0084, N = 46), DAS28-CRP (p = 0.007, N = 47), and hsCRP (p = 0.002, N = 56), respectively. In the serum of patients with RA, levels of soluble PD-1, PDL-2, and Tim3 were extremely elevated. CD4+ TIM3+% (p = 0.0089, N = 46) and CD8+ TIM3+% (p = 0.0305, N = 46) were correlated with sTIM3 levels; sPD1 levels were correlated with CD4+CD279+% (p < 0.0001, N = 31) and CD3+CD279+% (p = 0.0084, N = 30). CONCLUSIONS: Co-IR expressions on CD4+ and CD8+ T cells, as well as soluble PD-1, PDL-2, and TIM3 levels, could function as indicators of disease activity and potentially play crucial roles in the pathogenesis of RA.


Assuntos
Artrite Reumatoide , Receptor de Morte Celular Programada 1 , Humanos , Proteína C-Reativa/metabolismo , Receptor Celular 2 do Vírus da Hepatite A , Artrite Reumatoide/patologia , Antígenos HLA-DR , Receptores Imunológicos
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 207-214, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38512030

RESUMO

Objective To investigate the role of human leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in the regulation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) and phosphatidylinositol 3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT /mTOR) signaling pathways in human acute myeloid leukemia HEL cells carrying the JAK2 V617F mutation, along with its effects on cell proliferation and apoptosis. MethodsThe JAK2 V617F mutation was identified using reverse transcription PCR and gene sequencing. The protein phosphatase (PTP) recruited by LAIR-1 was determined through co-immunoprecipitation and Western blot analysis. The proliferation of HEL cells was detected by CCK-8 assay. The apoptosis rate of HEL cells was detected by flow cytometry with annexin V-FITC/PI labeling. Western blot analysis was employed to assess the phosphorylation status of proteins involved in the JAK/STAT and PI3K/AKT/mTOR pathways, as well as the expression levels of cyclinD1, B cell lymphoma 2 (Bcl2), and Bcl2 associated X protein (BAX). Results In HEL cells containing the JAK2 V617F mutation, LAIR-1 was observed to recruit SH2-containing protein tyrosine phosphatase 2 (SHP-2) upon binding with its ligand collagen. Moreover, LAIR-1 downregulated the tyrosine phosphorylation levels of JAK2, STAT1, STAT3, STAT5, AKT and mTOR and significantly reduced the expression of cyclin D1 and Bcl2, while having no effect on the expression of BAX. In addition, LAIR-1 exhibited a significantly inhibitory effect on cell proliferation and promoted apoptosis in HEL cells. Conclusion In HEL cells with JAK2 V617F mutation, LAIR-1 can inhibit the activation of JAK/STAT and PI3K/AKT/mTOR signaling pathways by recruiting SHP-2, thereby inhibiting the proliferation of HEL cells and promoting cell apoptosis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Imunológicos , Humanos , Proteína X Associada a bcl-2 , Serina-Treonina Quinases TOR , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose , Transdução de Sinais , Mutação , Janus Quinase 2/genética
20.
Theranostics ; 14(5): 2232-2245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505612

RESUMO

Rationale: Systemic sclerosis (SSc) is a chronic and incurable autoimmune disease with high mortality rates, and skin fibrosis is one of distinguishing hallmarks in the pathogenesis. However, macrophage heterogeneity regulating skin fibrosis remain largely unknown. Methods: We established mouse disease model and performed single-cell RNA-sequencing (scRNA-seq) to resolve the dynamic and heterogenous characteristics of macrophages in skin fibrosis, and the role of TREM2-dependent macrophages in the pathological process was investigated using knockout mice and intraperitoneal transferring TREM2+ macrophages combining with functional assays. Results: We show that TREM2-expressing macrophages (TREM2+ MФs) accumulate in injured skin of mice treated by bleomycin (BLM) and human SSc, and their gene signatures and functional pathways are identified in the course of disease. Genetic ablation of Trem2 in mice globally accelerates and aggravates skin fibrosis, whereas transferring TREM2hi macrophages improves and alleviates skin fibrosis. Amazingly, we found that disease-associated TREM2+ MФs in skin fibrosis exhibit overlapping signatures with fetal skin counterparts in mice and human to maintain skin homeostasis, but each has merits in skin remodeling and development respectively. Conclusion: This study identifies that TREM2 acts as a functional molecule and a major signaling by which macrophage subpopulations play a protective role against fibrosis, and disease-associated TREM2+ MФs in skin fibrosis might undergo a fetal-like reprogramming similar to fetal skin counterparts.


Assuntos
Macrófagos , Pele , Humanos , Animais , Camundongos , Macrófagos/metabolismo , Fibrose , Pele/patologia , Bleomicina , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...